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Potent glycosidase inhibitors via hetero Diels—Alder reactions:
asymmetric synthesis of S-methyl-trihydroxypyrrolidines
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Abstract: Some straightforward chemical transformations of oxazine diol 4, which was
obtained from sorbaldehyde 2 by an asymmetric hetero Diels—Alder reaction followed
by osmylation, led to the protected dihydroxypyrrolidine-aldehyde 8a and, after basic
epimerisation, to 8b. Reduction of the aldehyde moiety and deprotection gave the potent
glycosidase inhibitors 2,5,6-trideoxy-2,5-imino-D-altritol and D-allitol 9a and 9b. © 1997
Elsevier Science Ltd. All rights reserved.

Some type 1 5-methyl-polyhydroxypyrrolidines, also called w-deoxy-azasugars, are powerful L-
fucosidase inhibitors; they were prepared via chemo-enzymatic syntheses by Wong et al.1-3. Recently
the all-trans stereoisomer was isolated from a tree of the leguminoseae family (Sophoreae tribu)* and
shown to possess B-mannosidase inhibitor properties* (Scheme 1).

We describe herein the chemical’ synthesis of two type 1 pyrrolidinetriols starting from the enan-
tiomerically pure oxazine-diol 4 which has been obtained previously with excellent enantioselectivity
(>98%) from sorbaldehyde 2 via an asymmetric hetero Diels—Alder reaction using chiral chloronitroso
derivative 3 (obtained from D-mannose according to the Kresze and Vasella procedurem). The key

steps are N-cyclisation after reductive cleavage of the N-O bond and base-induced epimerisation of
the formyl group.

Synthesis

Protection of the cis-diol moiety as the acetonide 5 (dimethoxypropane, Amberlyst-15, 2 h, 45°C,
quant.) followed by hydrogenolysis of the N-O bond (Pd/C, EtOH, 50°C) gave a linear amino acetal
which was N-protected again to 6a (CICO2Bn, NaOH, rt; 15 h, 84% from 5). Mesylation to 6b
(MsCl, NEt3 in CH,Cl,) and cyclisation (aq. N NaOH, 80°C, 1.5 d, 65% from 6a) gave the protected
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pyrrolidine-triol 7. Selective deprotection of the dimethylacetal function by Amberlyst-15 in acetone
led in good yield (ca. 80%) to 2,5-trans-aldehyde 8a as the key product (Scheme 2).

Compound 8a presents a severe steric bulkiness, so that its 'H-NMR spectrum showed distinct
resonance for two rotamers. Epimerisation with NapCO3 in MeOH (1 h, rt, ca. 65%) gave the
sterically less crowded and thermodynamically more stable 2,5-cis-aldehyde 8b. Crude compounds 8a
and 8b were characterised by !H-NMR®. Reduction with NaBH, in EtOH of the aldehyde function
to the corresponding alcohols, deprotection (Amberlyst-15 H®, EtOH, 80°C) followed by catalytic
hydrogenolysis (on Pd/C) led to the expected pyrrolidinetriols 9a and 9b (50% yield from 7)°.

Glycosidases inhibition assays!®13

Pyrrolidines 9a,b proved to be glycosidases inhibitors: 9a is a strong competitive inhibitor of
«-D-mannosidase and O-L-fucosidase (83% and 95% inhibition at 1 mM, Ki=53 yM and 9 pM
respectively), but a weak inhibitor of B-D-glucosidase (40% inhibition at 1 mM) and has no effect on
o-D-glucosidase. Isomer 9b seems to be a specific ®-L-fucosidase inhibitor (85% inhibition at 1 mM).

Pyrrolidine 9a is an &-D-mannosidase inhibitor as potent as ]—deoxy-manno-nojirimycinl1. Its
activity is similar to that of unmethylated pyrrolidine compound 10, except that the latter has no
effect on &-L-fucosidase!?. The 5-methyl substituent seems to be responsible for the x-L-fucosidase
inhibitory activity, but has a marginal effect on - and B-D-glucosidase and ®-D-mannosidase.
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Glycosidase activity of 9a and 9b were determined according to the literature!® at 37°C
in 0.05 M Na citrate—phosphate buffer against o-D-glucosidase (EC 3.2.1.20) from Bacillus
stearothermophilus at pH 6.8, B-D-glucosidase (EC 3.2.1.21) from almond at pH 5.0, &-D-
mannosidase (EC 3.2.1.24) from Jack beans at pH 4.5 and &-L-fucosidase (EC 3.2.1.51) from
bovine kidney at pH 5.5. Glycosidases and corresponding p-nitrophenyl glycopyranosides were
obtained from Sigma Chemical Co. The amount of enzyme added in each essay was adjusted so
that less than 10% of the substrate would be consumed. Inhibitors were incorporated variously
to give a final concentration in the range of 1073 to 10~5 M. The release of p-nitrophenol was
measured at 400 nm in a spectrophotometer Gilford ‘respons’ versus p-nitrophenol calibration
solutions. Dissociation constants for inhibitors were calculated in absence and presence of
inhibitors according to the Lineweaver—Burck method.
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